

Photocycloadditionen mit α- und β-Naphthaldehyd: Vollständige Umkehr der Diastereoselektivität als Konsequenz unterschiedlich konfigurierter elektronischer Zustände

Axel G. Griesbeck*^a, Harald Mauder^a, Karl Peters^b, Eva-Maria Peters^b und Hans Georg von Schnering^b

Institut für Organische Chemie, Universität Würzburg^a, Am Hubland, D-8700 Würzburg

Max-Planck-Institut für Festkörperforschung^b, Heisenbergstraße 1, D-7000 Stuttgart 80

Eingegangen am 13. September 1990

Key Words: Paternò-Büchi reaction / Spin-correlation effect / Photocycloadditions / Naphthaldehydes

Photocycloadditions with α- and β-Naphthaldehyde: Complete Inversion of Diastereoselectivity as a Consequence of Differently Configurated Electronic States

The diastereoselectivity of the [2 + 2] photocycloaddition reaction between aromatic aldehydes and 2,3-dihydrofuran (3) is completely inverted when changing the electronic configuration of the excited triplet from ${}^3(n\pi^*)$ to ${}^3(\pi\pi^*)$. Mesitylenaldehyde, which corresponds to the first case, reacts *endo*selectively, whereas α - and β -naphthaldehyde (with low-lying $\pi\pi^*$ triplets and reactive $n\pi^*$ singlets) react *exo*-selectively. The configuration of the α -naphthaldehyde adduct is proven

Die Regioselektivität der Paternò-Büchi-Reaktion zwischen elektronisch angeregten Carbonyl-Verbindungen und elektronenreichen Alkenen kann in vielen Fällen über das Diradikalmodell¹⁾ erklärt werden. Besonders nützlich ist dieses Konzept bei der Vorhersage der Regioselektivität der Photoaddition an cyclische Enolether wie Furan²⁾ oder 2,3-Dihydrofuran³⁾. Während nämlich im ersten Fall ausschließlich 6-substituierte 2,7-Dioxabicyclo[3.2.0]hept-3-ene gebildet werden, können bei der Addition an 2,3-Dihydrofuran nur die 2,6-Dioxabicyclo[3.2.0]heptane beobachtet werden. Diese Olefine eignen sich deshalb ausgezeichnet für die Untersuchung der Stereoselektivität beim Einsatz prochiraler Carbonyl-Verbindungen. Wir konnten zeigen, daß die Cycloaddition zwischen aromatischen Aldehyden und Furan nur exo-konfigurierte Produkte liefert, während bei der entsprechenden Reaktion mit 2,3-Dihydrofuran überwiegend die endo-Oxetane gebildet werden⁴). Diese unterschiedliche Diastereoselektivität kann mit Hilfe der Salem-Regeln⁵⁾ für die geschwindigkeitsbestimmenden Faktoren des ISC (Inter System Crossing) rationalisiert werden⁶⁾. Entscheidend für die Anwendung dieses Konzepts ist die genaue Kenntnis der elektronischen Konfiguration der angeregten Carbonyl-Komponente. So ist es für Benzaldehyd und Alkyl-substituierte Analoga der Triplett-n^{*}-Zustand, der als reaktives längerlebiges Intermediat auftritt⁷). Bei den aliphatischen Carbonyl-Verbindungen ist die ISC-Geschwindigkeit für den $n\pi^*-3n\pi$ -Übergang kleiner⁸, deshalb sind auch beide Zustände in bimolekularen Prozessen reaktiv. Wir haben nun die Photocycloadditionen einer Reihe von Aldehyden an Furan (1) und 2,3-Dihydrofuran (3) untersucht und eine signifikante Abhängigkeit der Diastereoselektivität von der elektronischen Konfiguration des angeregten Zustandes gefunden.

Die Paternò-Büchi-Reaktion mit Furan (1) verläuft in allen Fällen hoch *exo*-diastereoselektiv. So konnte bei der Reaktion mit Acetaldehyd nur noch 3% des *endo*-Diastereomeren detektiert werden. by means of X-ray structure analysis. This type of spin-correlation effect can be rationalized by comparing the conformation of the reactive biradical intermediates for rapid intersystem crossing and/or bond closure. In the furan (1) case, this effect cannot be observed. All carbonyl compounds investigated here react exo-selectively. A possible explanation for this pronounced selectivity is the assumption of a secondary orbital effect.

^{a)}d.r.: Diastereomerenverhältnis

Die Addition von Mesitylaldehyd an Furan (1) verläuft auch in niedrig konzentrierten Lösungen der Substrate (1:1) in Benzol rasch unter ausschließlicher Bildung des *exo*-Diastereomeren **2b** ab. Hingegen müssen die entsprechenden Umsetzungen mit α - und β -Naphthaldehyd in Furan (1) als Lösungsmittel durchgeführt werden (Aldehyd/Olefin = 1:60 bis 1:100), um einen Verbrauch der Carbonyl-Komponente registrieren zu können. Wird die Reaktion nach 50proz. Umsatz des Aldehyds abgebrochen, so können wiederum nur die *exo*-Produkte **2c** und **2d** isoliert werden.

Deutlich unterschiedliche Ergebnisse ergeben sich bei der Photocycloaddition an 2,3-Dihydrofuran (3): So wird Acetaldehyd (völlig regioselektiv unter Bildung des 2,6-Dioxabicyclus) mit einer Diastereoselektivität von 55:45 zugunsten des *exo*-Oxetans **4a** addiert. Diese Selektivität ist vom Lösungsmittel unabhängig und konnte sowohl in Benzol, Methylcyclohexan als auch Acetonitril beobachtet werden.

Wird Piperylen als Triplettlöscher zugesetzt, verändert sich die Diastereoselektivität in den Fehlergrenzen ($\pm 2\%$, ¹H-NMR- und ¹³C-NMR-Integration bzw. Kapillar-GC-Analyse) ebenfalls nicht. Mit Mesitylaldehyd als Carbonyl-Komponente kann ausschließlich das *endo*-Diastereomer **5b** detektiert werden⁶. Wird nun α -Naphthaldehyd eingesetzt, sinkt wie im Furan-Fall die Reaktionsgeschwindigkeit signifikant ab. Das Olefin muß wiederum als Lösungsmittel eingesetzt werden, um überhaupt eine Umsetzung zu erzielen. Nach 70proz. Umsatz können drei Produkte isoliert werden: Oxetan **4c** mit 55% und zwei diastereomere Carbinole **6** (d.r. = 55:45) mit 29% Ausbeute. Das Oxetan als Produkt der Photocycloaddition fällt diastereomerenrein an. Aufgrund der charakteristisch unterschiedlichen NMR-Daten von **4c** im Vergleich zum Mesityl-Derivat **5b** haben wir diesem Oxetan die *exo*-Stereochemie zugeordnet.

Das NOE-Differenzspektrum zeigte bei Sättigung des Signals der Protonen an C-3 eine Verstärkung (8.6%) der Resonanz von 7-H. Die Kristallstrukturanalyse von $4c^{9}$ bestätigte unsere Annahme (Abb. 1). Von der (*endo*-konfigurierten) Mesityl-Verbindung 5b konnte keine Kristallstrukturanalyse durchgeführt werden, da der Röntgenstrahl den Kristall in kurzer Zeit zerstörte, ein Effekt, den wir auch bei der Bestrahlung von 5b mit kurzwelligem Licht ($\lambda <$ 300 nm) feststellen konnten. Bei der Umsetzung von 2,3-Dihydrofuran (3) mit β -Naphthaldehyd wurde ebenfalls nur ein Oxetan-

Abb. 1. Struktur von 4c im Kristall

Diastercomer, 4d, gebildet, allerdings konnte hier kein Carbinol beobachtet werden.

Die räumlich anspruchsvollen Substituenten Mesityl bzw. Naphthyl führen also im Vergleich mit dem "kleinen" Methyl-Substituenten zu einer Erhöhung der Diastereoselektivität der Paternò-Büchi-Reaktion und das sowohl bei der Umsetzung mit Furan (1) als auch mit 2,3-Dihydrofuran (3). Während aber mit Furan (1) die dirigierende Richtung konstant bleibt, kehrt sie sich im Dihydrofuran-Fall um. Dieser Effekt kann nicht über sterische Einflüsse erklärt werden, vielmehr ist es die elektronische Konfiguration der angeregten Carbonyl-Komponente, die sich hier ausdrückt.

Die Photocycloaddition von Acetaldehyd ist, wie die Versuche mit Piperylen als Triplettlöscher ergaben, überwiegend eine Reaktion über den $1n\pi^*$ -Zustand. Die Diastereoselektivität ist bei der Addition an Furan bereits größer 97%, und jede Aldehyd-Komponente RCHO mit einem sterisch anspruchsvolleren Substituenten R führt zur ausschließlichen (in den Meßgrenzen) Bildung des *exo*-Diastereomeren, und zwar *sowohl* aus dem $1n\pi^*$ - als auch aus dem $3n\pi^*$ -Zustand. Dieser Effekt konnte auch bei anderen cyclischen 1,3-Dienen wie Cyclopentadien¹⁰⁾ oder 1,3-Cyclohexadien¹¹⁾ beobachtet werden. Eine Sekundärorbital-Wechselwirkung (zwischen dem Allyl-Radikalteil und dem α -Oxy-Radikal) kann hier als Erklärung für die hohe Selektivität herangezogen werden. Bei der Paternò-Büchi-Reaktion von Acetaldehyd mit 2,3-Dihydrofuran (3) werden die diastereomeren Oxetane ca. 1:1 gebildet, die Richtung der Selektivitätslenkung ist also noch nicht auszumachen.

Die Reaktion über ${}^{3}n\pi^{*}$ -Zustände (z.B. bei Mesitylaldehyd) ist endo-selektiv und spricht stark auf den Raumanspruch des Substituenten R an (z.B. für R = Ph ist d.r. = 88:12⁶). Dieser Effekt kann über die Geometrie der 1,4-Diradikal-Intermediate beim ISC zur Singulettpotentialfläche plausibel gemacht werden ("spin-inversion control of stereoselectivity"¹²) (Abb. 2). Bei den Naphthaldehyden ist jedoch der niedrigste Triplett-Zustand vom $\pi\pi^*$ -Typ¹³⁾ und sollte deshalb an Carbonyl-Reaktionen nicht beteiligt sein. Konsequenterweise wird die Produktstereochemie dann über die Reaktion mit dem kurzlebigen ¹n^{*}-Zustand gesteuert. Dafür sprechen eine Reihe von Tatsachen: (a) die geringe Reaktivität der Naphthaldehyde¹⁴, (b) die bekannte stereospezifische Addition an cis- und trans-Buten¹⁵, (c) die Unempfindlichkeit der Photocycloaddition gegenüber der Anwesenheit von Triplett-Löschern wie z. B. Sauerstoff und (d) die effiziente Löschung der Naphthaldehyd-Fluoreszenz bei Zugabe von 2,3-Dihydrofuran (3). Bei der Reaktion über den ${}^{1}n\pi^{*}$ -Zustand treten aber keine Spinrestriktionen auf; die Cycloaddition kann konzertiert bzw. über ein extrem kurzlebiges Singulett-1,4-Diradikal ablaufen, und die Salem-Regeln⁵⁾ spielen keine Rolle mehr. In diesem Fall wird dann, wie die Versuche klar zeigen, das thermodynamisch günstigere¹⁶ exo-Produkt gebildet.

Abb. 2. 1,4-Diradikale bei der Paternò-Büchi-Reaktion mit 3 (M = Mesityl; Naph = Naphthyl)

Wir danken dem Fonds der Chemischen Industrie (Liebig-Stipendium für A.G.G.) und der Deutschen Forschungsgemeinschaft (DFG-Projekt Gr 881/2-1) für finanzielle Unterstützung.

Experimenteller Teil

Die eingesetzten Olefine wurden jeweils destillativ gereinigt. – Schmp.: Büchi 535. – IR: Perkin-Elmer 1420. – 1 H- und 13 C-

NMR: Bruker WM 80, AC 200; Lösungen in CDCl₃ mit Tetramethylsilan als internem Standard. – MS: Finnigan MAT 90.

Allgemeine Arbeitsvorschrift (AAV): In einer Pyrex-Tauchschachtapparatur werden je 12.8 mmol des Aldehyds in einer Lösung von absol. Olefin 1 oder 3 bei -10° C unter N₂ mit einem 150-W-Quecksilber-Hochdruckbrenner bestrahlt. Eventuell vorhandene Säurespuren werden durch Zugabe von Kaliumcarbonat abgepuffert. Anschließend wird vom Kaliumcarbonat abfiltriert, das überschüssige Olefin 1 oder 3 bei 20 mbar abdestilliert und der verbleibende Rückstand an Kieselgel [Petrolether/Essigester (10:1)] chromatographiert.

exo-6-(α-Naphthyl)-2,7-dioxabicyclo[3.2.0]hept-3-en (2c): 2.00 g (12.8 mmol) α-Naphthaldehyd und 150 ml 1 wurden nach der AAV 15 h (50% Umsatz) bestrahlt. Nach Aufarbeitung und chromatographischer Reinigung erhielt man so 1.15 g (82%) eines leicht gelben Öls. – IR (Film): $\tilde{v} = 3110 \text{ cm}^{-1}$, 3010, 2950 (C–H); 1635, 1535; 1155, 1070, 1025, 970 (C–O); 825, 805. – ¹H-NMR (200 MHz, CDCl₃): $\delta = 3.63$ (cm, J = 2.9, 2.6, 1.2 Hz, 1H, 5-H), 5.64 (dd, J = 2.9, 2.9 Hz, 1H, 4-H), 6.21 (d, J = 3.3 Hz, 1H, 6-H), 6.49 (dt, J = 4.6, 0.6 Hz, 1H, 1-H), 6.80 (dt, J = 2.7, 1.0 Hz, 1H, 3-H), 7.30 – 7.47 (mehrere m, 4H, Naphthyl-H), 7.65 – 7.80 (mehrere m, 3H, Naphthyl-H). – ¹³C-NMR (CDCl₃, 50 MHz): $\delta = 52.0$ (d), 90.3 (d), 103.9 (d), 108.2 (d), 121.2 (d), 122.2 (d), 125.5 (d), 125.8 (d), 126.3 (d), 128.0 (d), 129.0 (d), 133.5 (s), 136.8 (s), 142.5 (s), 149.0 (d). – MS (70 eV): m/z (%) = 224 (0.3) [M⁺], 200 (9), 165 (10), 156 (100), 155 (43), 141 (16), 128 (53), 127 (35), 68 (29), 39 (17).

 $C_{15}H_{12}O_2$ (224.23) Ber. C 80.34 H 5.39 Gef. C 80.13 H 5.19

exo-6-(β-Naphthyl)-2,7-dioxabicyclo[3.2.0]hept-3-en (2d): 2.00 g (12.8 mmol) β-Naphthaldchyd und 150 ml 1 wurden nach der AAV 15 h (50% Umsatz) bestrahlt. Nach Aufarbeitung und chromatographischer Reinigung erhielt man so 1.18 g (84%) leicht gelbliche Nadeln, Schmp. 85–86.5 °C. – IR (KBr): $\tilde{v} = 3080 \text{ cm}^{-1}$, 3000, 2910 (C–H); 1135, 1060, 1045, 960 (C–O); 835, 750, 690. – ¹H-NMR (200 MHz, CDCl₃): $\delta = 3.74$ (ddd, J = 3.7, 3.0, 1.2 Hz, 1 H, 5-H), 5.53 (dd, J = 2.9, 2.9 Hz, 1 H, 4-H), 5.75 (d, J = 3.2 Hz, 1 H, 6-H), 6.64 (dt, J = 4.4, 0.7 Hz, 1 H, 1-H), 6.76 (dt, J = 2.9, 0.9 Hz, 1 H, 3-H), 7.46–7.56 (mehrere m, 3 H, Naphthyl-H), 7.84–7.94 (mehrere m, 4 H, Naphthyl-H). – ¹³C-NMR (CDCl₃, 50 MHz): $\delta =$ 52.5 (d), 92.8 (d), 104.2 (d), 108.3 (d), 122.9 (d), 124.2 (d), 126.2 (d), 126.4 (d), 127.7 (d), 128.1 (d), 128.7 (d), 133.1 (s), 133.1 (s), 138.4 (s), 148.5 (d). – MS (70 eV): m/z (%) = 224 (2.7) [M⁺], 195 (5), 165 (8), 156 (100), 155 (65), 127 (52), 77 (6), 68 (20), 51 (5), 39 (16).

C15H12O2 (224.23) Ber. C 80.34 H 5.39 Gef. C 80.59 H 5.29

 $exo-7-(\alpha-Naphthyl)-2,6-dioxabicyclo[3.2.0]heptan$ (4c): 2.00 g (12.8 mmol) α-Naphthaldehyd und 150 ml 3 wurden nach der AAV 48 h (70% Umsatz) bestrahlt. Nach Aufarbeitung und chromatographischer Reinigung erhielt man so 1.11 g (55%) farblose Prismen, Schmp. 96–97.5 °C. – IR (KBr): $\tilde{v} = 3000 \text{ cm}^{-1}$, 2980, 2900 (C-H); 1605, 1520; 1220, 1180, 1080, 980 (C-O), 900, 812. - ¹H-NMR (CDCl₃, 200 MHz): $\delta = 1.84$ (dddd, J = 13.8, 11.0, 8.4, 4.2 Hz, 1 H, 4-H_{eo}), 2.34 (dd, J = 13.8, 4.5 Hz, 1 H, 4-H_{ax}), 4.44-4.62 $(m, 2H, 3-H_{ax}, 3-H_{eq}), 4.73 (ddd, J = 4.2, 2.6, 0.5 Hz, 1H, 1-H), 5.52$ (dd, J = 4.2, 4.2 Hz, 1 H, 5-H), 6.09 (dd, J = 1.3, 0.6 Hz, 1 H, 7-H), 7.48-7.58 (mehrere m, 3H, Naphthyl-H), 7.74-7.94 (mehrere m, 4H, Naphthyl-H). – ¹³C-NMR (CDCl₃, 50 MHz): δ = 33.7 (t), 67.9 (t), 83.3 (d), 85.4 (d), 86.2 (d), 121.4 (d), 122.7 (d), 125.4 (d), 125.8 (d), 126.3 (d), 127.7 (d), 128.8 (d), 133.5 (s), 133.5 (s), 135.3 (s). - MS (70 eV): m/z (%) = 226 (6) [M⁺], 157 (49), 156 (100), 141 (22), 128 (78), 115 (14), 77 (13), 70 (87), 57 (13), 42 (34).

C₁₅H₁₄O₂ (226.27) Ber. C 79.60 H 6.23 Gef. C 79.10 H 6.21

Kristallographische Daten: Kristallgröße: $0.6 \times 0.6 \times 0.3$ mm; monoklin: Raumgruppe $P_{2_1/a}$; a = 1385.9(4), b = 814.1(2), c = 1089.5(3) pm; $\beta = 106.02(2)^{\circ}$; $V = 1181.6(6) \cdot 10^{6}$ pm³; Z = 4; $d_{\text{ber.}} = 1.272$ gcm⁻³; Diffraktometer: Siemens R3m/V; Strahlung: Mo- K_{α} ; Monochromator: Graphit; 3030 gemessene Reflexe, davon 2728 mit $F > 3\sigma(F)$ für die Full-Matrix-Least-Squares-Verfeinerung verwendet; R = 0.065; $R_{w} = 0.054$. Atomkoordinaten und Thermalparameter finden sich in Tab. 1, Bindungslängen und -winkel in Tab. 2.

exo-7-(β-Naphthyl)-2,6-dioxabicyclo[3.2.0]heptan (4d): 2.00 g (12.8 mmol) β-Naphthaldehyd und 150 ml 3 wurden nach der AAV 48 h (70% Umsatz) bestrahlt. Nach Aufarbeitung und chromatographischer Reinigung erhielt man so 1.07 g (53%) farblose Prismen, Schmp. 78-79.5 °C. – IR (KBr): $\tilde{v} = 3090 \text{ cm}^{-1}$, 3005, 2905 (C-H); 1290, 1180, 1095, 1075, 985 (C-O); 970, 945, 835, 760. -¹H-NMR (CDCl₃, 200 MHz): $\delta = 1.70$ (cm, J = 4.2 Hz, 1H, 4- H_{eq}), 2.19 (ddd, J = 13.7, 2.9, 2.7 Hz, 1H, 4- H_{ax}), 4.32 (m, 2H, 3- H_{ax} , 3- H_{eq}), 4.61 (dd, J = 3.8, 2.6 Hz, 1 H, 5-H), 5.48 (dd, J = 4.4, 3.4 Hz, 1 H, 1-H), 5.49 (d, J = 3.4 Hz, 1 H, 7-H), 7.36 – 7.45 (mehrere m, 3H, Naphthyl-H), 7.73-7.83 (mehrere m, 4H, Naphthyl-H). -¹³C-NMR (CDCl₃, 50 MHz): δ = 33.5 (t), 67.5 (t), 83.8 (d), 85.4 (d), 88.3 (d), 122.8 (d), 123.8 (d), 126.0 (d), 126.2 (d), 127.7 (d), 128.0 (d), 128.5 (d), 133.0 (s), 133.2 (s), 137.6 (s). - MS (70 eV): m/z (%) = 227 (1.4) $[M^+ + 1]$, 226 (7.8) $[M^+]$, 157 (50), 156 (73), 141 (20), 127 (42), 115 (8), 77 (8), 70 (100), 57 (10), 42 (32).

C15H14O2 (226.27) Ber. C 79.63 H 6.24 Gef. C 79.85 H 6.34

Tab. 1. Atomkoordinaten (×10⁴) und äquivalente isotrope Thermalparameter (×10⁻¹) [pm²] von 4c

	x	У	z	U(eq)
C(1)	9221(2)	1636(3)	2310(2)	62(1)
O (2)	10099(2)	1955(2)	1933(2)	73(1)
C(3)	10792(2)	2755(4)	2984(3)	83(1)
C(4)	10159(3)	3787(4)	3618(3)	86(1)
C(5)	9196(2)	2809(3)	3392(3)	70(1)
O (6)	9254(2)	1459(2)	4279(2)	73(1)
C(7)	9310(2)	261(3)	3310(2)	56(1)
C(8)	8495(2)	-1014(3)	3060(2)	55(1)
C(9)	9177(2)	-2276(3)	1381(2)	58(1)
C (10)	9130(2)	-3460(4)	483(3)	71(1)
C(11)	8386(3)	-4670(4)	267(3)	85(1)
C(12)	7699(2)	-4673(4)	949(3)	83(1)
C(13)	7019(2)	-3440(4)	2617(4)	91(2)
C(14)	7049(3)	-2270(5)	3489(4)	97(2)
C(15)	7788(2)	-1034(4)	3721(3)	77(1)
C(16)	8473(2)	-2239(3)	2121(2)	52(1)
C(17)	7719(2)	-3472(4)	1890(3)	67(1)

Гаb.	2.	Ausgewählte	Bindungslängen	[A]	und	-winkel	[]	von	4 c	;
------	----	-------------	----------------	-----	-----	---------	-----	-----	-----	---

C1-O2	1.412(4)	O2-C1-C5	108.4(2)
O2-C3	1.433(3)	C1-C5-C4	104.3(3)
C3-C4	1.513(5)	O2-C3-C4	105.7(2)
C4-C5	1.514(4)	C3-C4-C5	103.3(2)
C5-O6	1.451(3)	C5-C1-C7	85.6(2)
O6-C7	1.455(3)	C1-C7-O6	90.9(2)
C1- C7	1.543(4)	C1-C5-O6	91.8(2)
C1-C5	1.525(4)	C5-O6-C7	91.7(2)
C7-C8	1.503(4)		

CAS-Registry-Nummern

1: 110-00-9 / 2a: 86420-65-7 / 2b: 130548-35-5 / 2c: 130548-36-6 / 2d: 130548-37-7 / 3: 1191-99-7 / 4a: 130548-38-8 / 4c: 130434-14-9 / 4d: 130434-15-0 / 5a: 130548-39-9 / 5b: 130548-40-2 / 6 (Diastereomer 1): 130434-16-1 / 6 (Diastereomer 2): 130434-17-2 / Acetaldehyd: 75-07-0 / Mesitylaldehyd: 487-68-3 / α -Naphthaldehyd: 66-77-3 / β-Naphthaldehyd: 66-99-9

- ¹⁾ Erster spektroskopischer Nachweis: S. C. Freilich, K. S. Peters,
- ²⁾ ^{2a)} G. O. Schenck, W. Hartmann, R. Steinmetz, *Chem. Ber.* 96 (1963) 498. ^{2b)} S. Toki, K. Shima, H. Sakurai, *Bull. Chem. Soc. Jpn.* 38 (1965) 760. ^{2c)} K. Shima, H. Sakurai, *Bull. Chem. Soc. Jpn.* 39 (1966) 1806.
- ³⁾ H. A. J. Carless, D. J. Haywood, J. Chem. Soc., Chem. Commun. 1980, 1067. ⁴⁾ A. G. Griesbeck, S. Stadtmüller, *Chem. Ber.* 123 (1990) 357.
- ⁵⁾ L. Salem, C. Rowland, Angew. Chem. 84 (1972) 86; Angew. Chem. Int. Ed. Engl. 11 (1972) 92.
- ⁶⁾ A. G. Griesbeck, S. Stadtmüller, J. Am. Chem. Soc. 112 (1990) 1281.

- ⁷⁾ N. C. Yang, R. Loeschen, D. Mitchell, J. Am. Chem. Soc. 89 (1967) 5465.
- ⁸⁾ D. A. Hansen, E. K. C. Lee, J. Chem. Phys. 62 (1975) 183. ⁹⁾ Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wis-senschaftlich-technische Information mbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-54743, der Autorennamen und des Zeitschriftenzitats angefordert werden.
- ¹⁰ G. Jones II, Org. Photochem. 5 (1981) 15.
 ¹¹ K. Shima, T. Kubota, H. Sakurai, Bull. Chem. Soc. Jpn. 49 (1976) 2567.
- ¹²⁾ S. S. Shaik, J. Am. Chem. Soc. 101 (1979) 3184.
- ¹³⁾ D. R. Kearns, W. A. Case, J. Am. Chem. Soc. 88 (1966) 5087. ¹⁴) [4 + 2]-Photocycloadditionen von Naphthylketonen an cap-todativ substituierte Olefine (über den ${}^{3}\pi\pi^{*}$ -Zustand) sind be-kannt: D. Döpp, C. Krüger, H. R. Memarian, Y.-H. Tsay, Angew. Chem. 97 (1985) 1059; Angew. Chem. Int. Ed. Engl. 24 (1988) 1048.
- ¹⁵⁾ N. C. Yang, M. Kimura, W. Eisenhardt, J. Am. Chem. Soc. **95** (1973) 5058.
- ¹⁶⁾ Unterschiede der Bildungswärmen (endo- versus exo-Isomer) nach Kraftfeldrechnungen: 4b/5b; $\Delta\Delta H_f = +3.05$ kcal/mol; 4c/5c: $\Delta\Delta H_{\rm f} = +2.1$ kcal/mol.

[308/90]